Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Small ; : e2310416, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660815

RESUMEN

Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.

2.
Biomaterials ; 308: 122550, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38581762

RESUMEN

Immune checkpoint blockade therapy represented by programmed cell death ligand 1 (PD-L1) inhibitor for advanced renal carcinoma with an objective response rate (ORR) in patients is less than 20%. It is attributed to abundant tumoral vasculature with abnormal structure limiting effector T cell infiltration and drug penetration. We propose a bispecific fibrous glue (BFG) to regulate tumor immune and vascular microenvironments simultaneously. The bispecific precursor glue peptide-1 (pre-GP1) can penetrate tumor tissue deeply and self-assemble into BFG in the presence of neuropilin-1 (NRP-1) and PD-L1. The resultant fibrous glue is capable of normalizing tumoral vasculature as well as restricting immune escape. The pre-GP1 retains a 6-fold higher penetration depth than that of antibody in the multicellular spheroids (MCSs) model. It also shows remarkable tumor growth inhibition (TGI) from 19% to 61% in a murine advanced large tumor model compared to the clinical combination therapy. In addition, in the orthotopic renal tumor preclinical model, the lung metastatic nodules are reduced by 64% compared to the clinically used combination. This pre-GP1 provides a promising strategy to control the progression and metastasis of advanced renal carcinoma.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Neoplasias Renales/patología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/terapia , Neoplasias Renales/inmunología , Humanos , Ratones , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/terapia , Carcinoma de Células Renales/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Ratones Endogámicos BALB C , Femenino , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo
3.
Cancer Biomark ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38517777

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) is the most frequent RNA modification in mammals, and its role in bladder cancer (BC) remains rarely revealed. OBJECTIVE: To predict the value of m6A-related genes in prognosis and immunity in BC. METHODS: We performed multiple omics analysis of 618 TCGA and GEO patients and used principal component analysis (PCA) to calculate the m6A score for BC patients. RESULTS: We described the multiple omics status of 23 m6A methylation-related genes (MRGs), and four m6A clusters were identified, which showed significant differences in immune infiltration and biological pathways. Next, we intersected the differential genes among m6A clusters, and 11 survival-related genes were identified, which were used to calculate the m6A score for the patients. We found that the high-score (HS) group showed lower tumor mutation burden (TMB) and TP53 mutations and better prognosis than the low-score (LS) group. Lower immune infiltration, higher expression of PD-L1, PD-1, and CTLA4, and higher immune dysfunction and immune exclusion scores were identified in the LS group, suggesting a higher possibility of immune escape. Finally, the experimental verification shows that the m6A related genes, such as IGFBP1, plays an important role in the growth and metastasis of bladder cancer. CONCLUSIONS: These findings revealed the important roles of m6A MRGs in predicting prognosis, TMB status, TP53 mutation, immune functions and immunotherapeutic response in BC.

4.
Natl Sci Rev ; 11(4): nwae028, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38425424

RESUMEN

Mitochondriopathy inspired adenosine triphosphate (ATP) depletions have been recognized as a powerful way for controlling tumor growth. Nevertheless, selective sequestration or exhaustion of ATP under complex biological environments remains a prodigious challenge. Harnessing the advantages of in vivo self-assembled nanomaterials, we designed an Intracellular ATP Sequestration (IAS) system to specifically construct nanofibrous nanostructures on the surface of tumor nuclei with exposed ATP binding sites, leading to highly efficient suppression of bladder cancer by induction of mitochondriopathy-like damages. Briefly, the reported transformable nucleopeptide (NLS-FF-T) self-assembled into nuclear-targeted nanoparticles with ATP binding sites encapsulated inside under aqueous conditions. By interaction with KPNA2, the NLS-FF-T transformed into a nanofibrous-based ATP trapper on the surface of tumor nuclei, which prevented the production of intracellular energy. As a result, multiple bladder tumor cell lines (T24, EJ and RT-112) revealed that the half-maximal inhibitory concentration (IC50) of NLS-FF-T was reduced by approximately 4-fold when compared to NLS-T. Following intravenous administration, NLS-FF-T was found to be dose-dependently accumulated at the tumor site of T24 xenograft mice. More significantly, this IAS system exhibited an extremely antitumor efficacy according to the deterioration of T24 tumors and simultaneously prolonged the overall survival of T24 orthotopic xenograft mice. Together, our findings clearly demonstrated the therapeutic advantages of intracellular ATP sequestration-induced mitochondriopathy-like damages, which provides a potential treatment strategy for malignancies.

6.
Drug Resist Updat ; 73: 101041, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38198845

RESUMEN

Macrophages are important components of the immune system. Mature macrophages can be recruited to tumor microenvironment that affect tumor cell proliferation, invasion and metastasis, extracellular matrix remodeling, immune suppression, as well as chemotherapy resistance. Classically activated type I macrophages (M1) exhibited marked tumor killing and phagocytosis. Therefore, using macrophages for adoptive cell therapy has attracted attention and become one of the most effective strategies for cancer treatment. Through cytokines and/or chemokines, macrophage can inhibit myeloid cells recruitment, and activate anti-tumor and immune killing functions. Applying macrophages for anti-tumor delivery is one of the most promising approaches for cancer therapy. This review article introduces the role of macrophages in tumor development and drug resistance, and the possible clinical application of targeting macrophages for overcoming drug resistance and enhancing cancer therapeutics, as well as its challenges.


Asunto(s)
Neoplasias , Macrófagos Asociados a Tumores , Humanos , Macrófagos , Neoplasias/patología , Citocinas , Microambiente Tumoral
7.
Nano Lett ; 24(5): 1510-1521, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38285667

RESUMEN

α-PD-L1 therapy has shown encouraging results at harnessing the immune system to combat cancer. However, the treatment effect is relatively low due to the dense extracellular matrix (ECM) and tumor immunosuppressive microenvironment (TIME). Therefore, an ultrasound (US)-responsive nanosensitizer (URNS) is engineered to deliver losartan (LST) and polyethylenimine (PEI) to remolde the TME, driving "cold"-"hot" tumor transformation and enhancing the sensitivity of α-PD-L1 therapy. In the tumor site, noninvasive US can make MTNP generate ROS, which cleave ROS-sensitive bonds to dissociate MTNPtK@LST-PEI, shedding PEI and releasing LST from mesoporous spheres. The results demonstrated that URNS combined with α-PD-L1 therapy effectively inhibited tumor growth with an inhibition rate as high as 90%, which was 1.7-fold higher than that of the α-PD-L1 treatment in vivo. In summary, the URNS improves the sensitivity of α-PD-L1 therapy by remodeling the TME, which provides promising insights for optimizing cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Especies Reactivas de Oxígeno , Matriz Extracelular , Inmunosupresores , Inmunoterapia , Losartán , Polietileneimina , Microambiente Tumoral
8.
Nat Commun ; 15(1): 454, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212623

RESUMEN

Emerging evidence indicates that the activation of ferroptosis by glutathione peroxidase 4 (GPX4) inhibitors may be a prominent therapeutic strategy for tumor suppression. However, the wide application of GPX4 inhibitors in tumor therapy is hampered due to poor tumor delivery efficacy and the nonspecific activation of ferroptosis. Taking advantage of in vivo self-assembly, we develop a peptide-ferriporphyrin conjugate with tumor microenvironment specific activation to improve tumor penetration, endocytosis and GPX4 inhibition, ultimately enhancing its anticancer activity via ferroptosis. Briefly, a GPX4 inhibitory peptide is conjugated with an assembled peptide linker decorated with a pH-sensitive moiety and ferriporphyrin to produce the peptide-ferriporphyrin conjugate (Gi-F-CAA). Under the acidic microenvironment of the tumor, the Gi-F-CAA self-assembles into large nanoparticles (Gi-F) due to enhanced hydrophobic interaction after hydrolysis of CAA, improving tumor endocytosis efficiency. Importantly, Gi-F exhibits substantial inhibition of GPX4 activity by assembly enhanced binding (AEB) effect, augmenting the oxidative stress of ferriporphyrin-based Fenton reaction, ultimately enabling antitumor properties in multiple tumor models. Our findings suggest that this peptide-ferriporphyrin conjugate design with AEB effect can improve the therapeutic effect via induction of ferroptosis, providing an alternative strategy for overcoming chemoresistance.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Endocitosis , Hemina , Hidrólisis , Péptidos/farmacología , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
9.
Curr Med Sci ; 44(1): 51-63, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38057536

RESUMEN

Ferroptosis, a type of regulated cell death driven by iron-dependent lipid peroxidation, is mainly initiated by extramitochondrial lipid peroxidation due to the accumulation of iron-dependent reactive oxygen species. Ferroptosis is a prevalent and primitive form of cell death. Numerous cellular metabolic processes regulate ferroptosis, including redox homeostasis, iron regulation, mitochondrial activity, amino acid metabolism, lipid metabolism, and various disease-related signaling pathways. Ferroptosis plays a pivotal role in cancer therapy, particularly in the eradication of aggressive malignancies resistant to conventional treatments. Multiple studies have explored the connection between ferroptosis and bladder cancer, focusing on its incidence and treatment outcomes. Several biomolecules and tumor-associated signaling pathways, such as p53, heat shock protein 1, nuclear receptor coactivator 4, RAS-RAF-MEK, phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin, and the Hippo-tafazzin signaling system, exert a moderating influence on ferroptosis in bladder cancer. Ferroptosis inducers, including erastin, artemisinin, conjugated polymer nanoparticles, and quinazolinyl-arylurea derivatives, hold promise for enhancing the effectiveness of conventional anticancer medications in bladder cancer treatment. Combining conventional therapeutic drugs and treatment methods related to ferroptosis offers a promising approach for the treatment of bladder cancer. In this review, we analyze the research on ferroptosis to augment the efficacy of bladder cancer treatment.


Asunto(s)
Ferroptosis , Neoplasias de la Vejiga Urinaria , Humanos , Ferroptosis/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Muerte Celular , Proteínas de Choque Térmico , Hierro
10.
Small ; 20(13): e2306699, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37963830

RESUMEN

Engineered macrophages are a promising tool for drug delivery and immunotherapy in cancer treatment. However, simultaneous targeted enrichment and controllable immunological activation of these macrophages at the tumor site remains challenging. As a solution, macrophages loaded with an advanced nanoparticle encapsulating CpG-conjugated magnetic nanoclusters (MNC) with indocyanine green (ICG) and nigericin (NIG) (MNC-ICG-NIG@SiO2 (MINS)), utilizing Se─Se bond-modified SiO2, are designed and applied in bladder cancer, which is typically managed surgically, followed by Bacillus Calmette-Guerin (BCG) adjuvant instillation therapy. Upon intravenous administration, BCG-mediated tumor-localized inflammation leads to targeted accumulation of MINS@MΦ. MINS@MΦ accumulates within the tumor tissue and is immunologically activated through laser irradiation, leading to ICG-mediated generation of reactive oxygen species, Se─Se bond cleavage, and subsequent NIG release to induce self-pyroptosis. Consequently, MINS@MΦ releases Fe2+ ions and CpG, thus promoting the M1 polarization of tumor-associated macrophages and secretion of appropriate antitumor cytokines. However, without intervention, MINS@MΦ undergoes apoptosis in the bloodstream after 48 h without eliciting any immune response. Therefore, this innovative approach optimizes and enhances the efficacy of BCG immunotherapy by precisely modulating the cytokines for effective bladder cancer treatment without inducing a systemic inflammatory response.


Asunto(s)
Mycobacterium bovis , Neoplasias de la Vejiga Urinaria , Humanos , Citocinas , Piroptosis , Vacuna BCG/uso terapéutico , Dióxido de Silicio , Macrófagos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Inmunoterapia
12.
Mater Horiz ; 10(11): 5298-5306, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37750812

RESUMEN

Cell function-associated biomolecular condensation has great potential in modulation of molecular activities. We develop a microtubule-trapping peptide that first self-assembles into nanoparticles and then in situ transforms into nanofibers via ligand-receptor interactions when targeted to tubulin. The nanofibers support the increased exposed targets for further adhering to microtubules and induce the self-assembly of microtubules into networks due to multivalent effects. Microtubule condensation with prolonged retention in cells for up to 24 h, which is 6 times longer than that of the non-transformable nanoparticle group, efficiently induces in vitro cell apoptosis and inhibits in vivo tumour growth. These smart transformable peptide materials for targeted protein condensation have the potential for improving retention and inducing cell apoptosis in tumour therapy.


Asunto(s)
Microtúbulos , Neoplasias , Humanos , Microtúbulos/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Proteínas/metabolismo , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/metabolismo
13.
FASEB J ; 37(9): e23118, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37531296

RESUMEN

Renal cancer stem cells (RCSCs) derived from clear cell renal cell carcinoma (ccRCC) tissues with higher microvessel density (MVD) have strong stemness and endothelial progenitor cells-like (EPCs-like) characteristics. A high level of lncRNA PVT1 expression is essential for simultaneously retaining strong RCSC stemness and EPCs-like characteristics. PVT1 binds with TAZ protein and prevents its phosphorylation, which promotes RCSC stemness. Moreover, RCSCs support endothelial differentiation and angiogenesis, which are mediated via the PVT1/miR-15b/KDR axis. This report provides insight into the determinants of RCSC impact on stemness and highlights the critical role of RCSC in angiogenesis. The presented findings suggest that targeting RCSC through PVT1 expression may be a new treatment strategy for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Células Progenitoras Endoteliales , Neoplasias Renales , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Proliferación Celular/genética , Células Progenitoras Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/genética , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
14.
Adv Mater ; 35(45): e2303831, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37462447

RESUMEN

Anti-PD-L1 monoclonal antibody has achieved substantial success in tumor immunotherapy by T-cells activation. However, the excessive accumulation of extracellular matrix components induced by unsatisfactory T-cells infiltration and poor tumor penetration of antibodies make it challenging to realize efficient tumor immunotherapy. Herein, a peptide-based bispecific nanoblocker (BNB) strategy is reported for in situ construction of CXCR4/PD-L1 targeted nanoclusters on the surface of tumor cells that are capable of boosting T-cells infiltration through CXCR4 blockage and enhancing T-cells activation by PD-L1 occupancy, ultimately realizing high-performance tumor immunotherapy. Briefly, the BNB strategy selectively recognizes and bonds CXCR4/PD-L1 with deep tumor penetration, which rapidly self-assembles into nanoclusters on the surface of tumor cells. Compared to the traditional bispecific antibody, BNB exhibits an intriguing metabolic behavior, that is, the elimination half-life (t1/2 ) of BNB in the tumor is 69.3 h which is ≈50 times longer than that in the plasma (1.4 h). The higher tumor accumulation and rapid systemic clearance overcome potential systemic side effects. Moreover, the solid tumor stress generated by excessive extracellular matrix components is substantially reduced to 44%, which promotes T-cells infiltration and activation for immunotherapy efficacy. Finally, these findings substantially strengthen and extend clinical applications of PD-1/PD-L1 immunotherapy.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Neoplasias/terapia , Anticuerpos Biespecíficos/uso terapéutico , Linfocitos T/metabolismo , Inmunoterapia
15.
Angew Chem Int Ed Engl ; 62(37): e202308049, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37486792

RESUMEN

Proteolysis targeting chimera (PROTAC) is an emerging pharmacological modality with innovated post-translational protein degradation capabilities. However, off-target induced unintended tissue effects and intrinsic "hook effect" hinder PROTAC biotechnology to be maturely developed. Herein, an intracellular fabricated nano proteolysis targeting chimeras (Nano-PROTACs) modality with a center-spoke degradation network for achieving efficient dose-dependent protein degradation in tumor is reported. The PROTAC precursors are triggered by higher GSH concentrations inside tumor cells, which subsequently in situ self-assemble into Nano-PROTACs through intermolecular hydrogen bond interactions. The fibrous Nano-PROTACs can form effective polynary complexes and E3 ligases degradation network with multi-binding sites, achieving dose-dependent protein degradation with "anti-hook effect". The generality and efficacy of Nano-PROTACs are validated by degrading variable protein of interest (POI) such as epidermal growth factor receptor (EGFR) and androgen receptor (AR) in a wide-range dose-dependent manner with a 95 % degradation rate and long-lasting potency up to 72 h in vitro. Significantly, Nano-PROTACs achieve in vivo dose-dependent protein degradation up to 79 % and tumor growth inhibition in A549 and LNCap xenograft mice models, respectively. Taking advantages of in situ self-assembly strategy, the Nano-PROTACs provide a generalizable platform to promote precise clinical translational application of PROTAC.


Asunto(s)
Neoplasias , Ubiquitina-Proteína Ligasas , Humanos , Animales , Ratones , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas/metabolismo , Sitios de Unión
16.
Adv Mater ; 35(35): e2210732, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37172955

RESUMEN

Missed or residual tumor burden results in high risk for bladder cancer relapse. However, existing fluorescent probes cannot meet the clinical needs because of inevitable photobleaching properties. Performance can be improved by maintaining intensive and sustained fluorescence signals via resistance to intraoperative saline flushing and intrinsic fluorescent decay, providing surgeons with sufficiently clear and high-contrast surgical fields, avoiding residual tumors or missed diagnosis. This study designs and synthesizes a photostable cascade-activatable peptide, a target reaction-induced aggregation peptide (TRAP) system, which can construct polypeptide-based nanofibers in situ on the cell membrane to achieve long-term and stable imaging of bladder cancer. The probe has two parts: a target peptide (TP) targets CD44v6 to recognize bladder cancer cells, and a reaction-induced aggregation peptide (RAP) is introduced, which effectively reacts with the TP via a click reaction to enhance the hydrophobicity of the whole molecule, assembling into nanofibers and further nanonetworks. Accordingly, probe retention on the cell membrane is prolonged, and photostability is significantly improved. Finally, the TRAP system is successfully employed in the high-performance identification of human bladder cancer in ex vivo bladder tumor tissues. This cascade-activatable peptide molecular probe based on the TRAP system enables efficient and stable imaging of bladder cancer.


Asunto(s)
Nanofibras , Neoplasias de la Vejiga Urinaria , Humanos , Recurrencia Local de Neoplasia , Péptidos/química , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Membrana Celular/metabolismo
17.
Cancer Med ; 12(11): 12106-12117, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37021811

RESUMEN

BACKGROUND: Neoadjuvant chemotherapy followed by radical cystectomy (RC) is the standard of care for patients with muscle-invasive bladder cancer (MIBC). However, treatment outcomes are suboptimal. Camrelizumab, a PD-1 blockade, has shown benefits in several tumors. This study aimed to investigate the efficacy and safety of neoadjuvant camrelizumab in combination with gemcitabine plus cisplatin (GC) followed by RC for MIBC patients. METHODS: This was a multi-center, single-arm study that enrolled MIBC patients with a clinical stage of T2-4aN0-1M0, and scheduled for RC. Patients received three 21-day cycles of camrelizumab 200 mg on day 1, gemcitabine 1000 mg/m2 on day 1 and 8, and cisplatin 70 mg/m2 on day 2, followed by RC. The primary endpoint was pathologic complete response (pCR, pT0N0). RESULTS: From May 2020 to July 2021, 43 patients were enrolled and received study medications at nine centers in China. Three of them were deemed ineligible and excluded from efficacy analysis but included in safety analysis. In total 10 patients were unevaluable as they declined RC (two due to adverse events [AEs] and eight due to patient's willingness). Among 30 evaluable patients, 13 patients (43.3%) achieved pCR, and 16 patients (53.3%) achieved pathologic downstaging. No AEs leading to death were observed. The most common AEs were anemia (69.8%), decreased white blood cell count (65.1%), and nausea (65.1%). Immune-related AEs were all grade 1 or 2. Pathologic response was not correlated with PD-L1 expression status or tumor mutation burden. Individual genes as a biomarker for pathologic response were not identified. CONCLUSIONS: Neoadjuvant treatment with camrelizumab and GC regimen demonstrated preliminary anti-tumor activity for MIBC patients with manageable safety profiles. The study met its primary endpoint, and the following randomized trial is ongoing.


Asunto(s)
Cisplatino , Neoplasias de la Vejiga Urinaria , Humanos , Cisplatino/uso terapéutico , Gemcitabina , Terapia Neoadyuvante/efectos adversos , Neoplasias de la Vejiga Urinaria/patología , Desoxicitidina/uso terapéutico , Cistectomía , Músculos/patología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Invasividad Neoplásica
18.
Sci Adv ; 9(9): eabq8225, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857458

RESUMEN

Up to 75% of bladder cancer patients suffer from recurrence due to postoperative tumor implantation. However, clinically used Bacillus Calmette-Guerin (BCG) treatment failed to inhibit the recurrence. Here, we report a bispecific glycopeptide (bsGP) that simultaneously targets CD206 on tumor-associated macrophages (TAMs) and CXCR4 on tumor cells. bsGP repolarizes protumoral M2-like TAMs to antitumor M1-like that mediated cytotoxicity and T cell recruitment. Meanwhile, bsGP is cleaved by the MMP-2 enzyme to form nanostructure for the long-term inhibition of CXCR4 downstream signaling, resulting in reduced tumor metastasis and promoted T cell infiltration. In orthotopic bladder tumor models, bsGP reduced the postoperative recurrence rate to 22%. In parallel, the recurrence rates of 89 and 78% were treated by doxycycline and BCG used in clinic, respectively. Mechanistic studies reveal that bsGP reduces the matrix microenvironment barrier, increasing the spatially redirected CD8+ T cells to tumor cells. We envision that bis-targeting CD206 and CXCR4 may pave the way to inhibit tumor metastasis and recurrence.


Asunto(s)
Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Humanos , Vacuna BCG , Linfocitos T CD8-positivos , Recurrencia Local de Neoplasia , Glicopéptidos
19.
J Clin Med ; 12(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902648

RESUMEN

BACKGROUND: Prostate cancer (PCa) is the leading cause of death in men and has poor therapeutic outcomes. METHODS: A novel endostatin 33 peptide was synthesized by adding a specific QRD sequence on the basis of the endostatin 30 peptide (PEP06) with antitumor activity. Then, bioinformatic analysis and subsequent experiments were performed to validate the antitumor function of this endostatin 33 peptide. RESULTS: We found that the 33 polypeptides significantly inhibited growth, invasion and metastasis and promoted the apoptosis of PCa in vivo or vitro, which is more significant than PEP06 under the same conditions. According to 489 cases from the TCGA data portal, the α6ß1 high expression group was closely associated with the poor prognosis (Gleason score, pathological N stage, etc.) of PCa and was mainly enriched in the PI3K-Akt pathway. Subsequently, we demonstrated that endostatin 33 peptide can down-regulate the PI3K-Akt pathway via the targeted inhibition of α6ß1, thereby inhibiting the epithelial-mesenchymal transition and matrix metalloproteinase in C42 cell lines. CONCLUSION: The endostatin 33 peptide can exert antitumor effects by inhibiting the PI3K-Akt pathway, especially in tumors with a high expression of the integrin α6ß1 subtype, such as prostate cancer. Therefore, our study will provide a new method and theoretical basis for the treatment of prostate cancer.

20.
Small ; 19(25): e2300060, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36929045

RESUMEN

Nanoscale drug carriers play a crucial role in reducing side effects of chemotherapy drugs. However, the mononuclear phagocyte system (MPS) and the drug protonation after nanoparticles (NPs) burst release still limit the drug delivery efficiency. In this work, a self-disguised Nanospy is designed to overcome this problem. The Nanospy is composed of: i) poly (lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) loading doxorubicin is the core structure of the Nanospy. ii) CD47 mimic peptides (CD47p) is linked to NPs which conveyed the "don't eat me" signal. iii) 4-(2-aminoethyl) benzenesulfonamide (AEBS) as the inhibitor of Carbonic anhydrase IX (CAIX) linked to NPs. Briefly, when the Nanospy circulates in the bloodstream, CD47p binds to the regulatory protein α (SIRPα) on the surface of macrophages, which causes the Nanospy escapes from phagocytosis. Subsequently, the Nanospy enriches in tumor and the AEBS reverses the acidic microenvironment of tumor. Due to above characteristics, the Nanospy reduces liver macrophage phagocytosis by 25% and increases tumor in situ DOX concentration by 56% compared to PLGA@DOX treatment. In addition, the Nanospy effectively inhibits tumor growth with a 63% volume reduction. This work presents a unique design to evade the capture of MPS and overcomes the influence of acidic tumor microenvironment (TME) on weakly alkaline drugs.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Doxorrubicina/química , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Péptidos/uso terapéutico , Liberación de Fármacos , Polietilenglicoles/química , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...